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1. Overview
Numerical modelling of mould filling during the casting of metals into moulds
is a moving boundary problem, where the domain of interest has an unknown
boundary at the start of the analysis. This type of problem has many important
industrial applications. They include applications in capillarity, melting and
solidification, crystal growth, flame propagation, nuclear fusion, wetting,
seepage, glass and metal forming processes, and many others in engineering
and science. An in-depth understanding of the physical phenomena which takes
place at the free surface is necessary, if it is to be accurately modelled. Owing to
the moving boundaries, and the complex physical processes at the free surface,
difficulties are experienced when an attempt is made to track it, viz:

• A variety of interface conditions exist, e.g. oxide formation, surface
tension etc., some of which might be non-linear.

• The solution domain is irregular, constantly changing and undergoing
large distortions. This could typically result in break up of the fluid mass
into droplets, or overlapping interfaces, resulting in the formation of air
pockets.

• Surface tension effects have been found to depend on the curvature of the
interface. As a result, in order to accurately predict the surface tension
forces, the free surface has to be accurately modelled.

• The domain might contain internal obstacles or cores that need to be
taken into account during free surface tracking. 

Several approaches to free surface modelling have been attempted with varying
degrees of success. These can be conveniently divided into two categories; the
fixed and moving mesh types. The fixed mesh approaches are Eulerian and the
moving mesh types Lagrangian. In the next two sections, the implementation of
each of these methods will be described, along with a brief evaluation of the
advantages and disadvantages. 

1.1 Lagrangian method
This is the natural choice for moving boundary type problems (Donea, 1983;
Hirt et al., 1974; Ramaswamy and Kawahara, 1987). In this formulation, the
coordinate system moves with the fluid. These methods are particularly suited
to problems where the mesh does not experience significant distortion. The
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main attraction for the Lagrangian formulation is that it permits the material
interface to be specifically delineated and precisely followed, and also allows
interface boundary conditions to be precisely applied. Regions of high gradients
can be refined, and allowed to move with the flow, resulting in an improvement
in results. The Lagrangian formulation has been used by many authors for
solving fluid flow problems (Hirt et al., 1970; Schulz, 1964).

However, the main difficulty in dealing with the Lagrangian approach lies
with mesh entanglement and numerical instability due to the irregular nature of
the mesh. The first problem arises because a mesh of fixed topology quickly
becomes distorted as the free surface deforms. This can be solved by re-
meshing or rezoning, but doing so results in the re-emergence of the convective
flux problem characteristics of the Eulerian approach. In addition, a robust re-
meshing algorithm is essential for this method to be successful, ensuring that
the variables are accurately transferred onto the finite element mesh for the
next time step. Since general rezoning can be a very complex process, it is
preferable to either use meshes that preserve the topology during the rezoning
process, or to use continuous rezoning to take advantage of the simplifications
offered by the small relative mesh displacements. Hirt et al. (1974) have
implemented a continuous re-meshing algorithm using the finite volume
technique. This approach, known as the Arbitrary Lagrangian-Eulerian
method, in common with Eulerian methods, suffers from numerical diffusion.
Margolin and Nichols have suggested ways of overcoming this problem. A
similar front tracking model has been developed by Muttin et al. (1993). In
summary, the Arbitrary Lagrangian-Eulerian formulation is a variant of the
Lagrangian formulation, with the mesh deforming in terms of an arbitrary
velocity, independent of the flow velocities, except at the free surface. The speed
of the moving mesh is incorporated into the convective term, making it more
stable numerically, and significantly reducing mesh distortions. The selection of
the mesh velocity is, however, not trivial and requires an experienced user for
proper implementation. The interface is tracked by following the Lagrangian
motion of the vertices aligned initially with the interface. Displacements at the
free surface have to be limited, and the method is more suitable for use with
triangular elements. The good news is that there is no limit on the time step size
and re-meshing can be restricted to either specified intervals or when
significant mesh deformation has occurred. The Arbitrary Lagrangian-
Eulerian formulation has been used by various authors for solving fluid flow
problems (Bach and Hassinger, 1985; Brackbill and Saltzman, 1986; Hirt et al.,
1970; Hwang and Stöehr, 1988; Ramshaw, 1985).

The free surface has also been tracked along preselected splines. However,
due to the complex nature of the filling patterns in mould filling, the above
method would be difficult to implement, since the generation of appropriate
splines requires some knowledge of the filling pattern (Debbaut, 1993; Kheshgi
and Scriven, 1982). Discrete representations of viscous flow phenomena has
been simulated using interacting particles. In this method, each particle has a
set of attributes such as mass, position, velocity and momentum. The state of
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the fluid system is defined by the attributes of a finite assembly of particles and
the evolution of the system defined by laws governing the interaction of
particles. Since particles are associated with different material properties, the
interface between materials can be easily followed. A review of this method can
be found in reference (Floryan and Rasmussen, 1989).

All the moving mesh methods described above have additional requirements
regarding the treatment of contact with the enclosing wall, and apart from the
pure Lagrangian method, they all introduce truncation errors during the
interpolation of variables from the distorted mesh to the new mesh.

1.2 Eulerian method
In the Eulerian formulation, the coordinate system is stationary, or moving in a
certain prescribed manner in order to take into account the continuously
changing solution domain. The grid movement is thus independent of the fluid
particle movement. This results in the method being able to deal easily with
fluids that undergo large distortions at the interface. Various variants of the
Eulerian approach exist.

In the strictly Eulerian approach, the grid does not change. The method can
thus cope with multiple interfaces and can handle large deformations without
loss of accuracy. A main drawback of this method, however, lies in the fact that
the interface location cannot be accurately determined since it does not lie on a
grid line. Compared with the Lagrangian formulation, interface boundary
conditions are more difficult to implement, although its treatment in 3D would
be more straightforward. Hirt and Nichols (1981) have used the Eulerian
approach to track the free surface. A method known as the surface tracking
method is discussed in reference (Floryan and Rasmussen, 1989). In this
method, the interface is represented by a series of interpolated curves through a
discrete set of points. The method allows for the resolution of features of the
interface smaller than the grid spacing. The main drawback of this method lies
in the high memory requirements. At each time step, the location of the points,
their connectivity, orientation and curvature has to be stored. This makes it
very difficult to implement for highly deforming and intersecting free surfaces.
As with the Lagrangian approach, the implementation of this method in three
dimensions would be very difficult indeed. Other methods known as volume
tracking methods are based on marker quantities which are used to indicate the
state of the cells used to discretise the domain of interest. They have the
advantage of not requiring storage of a representation of the interface. A
method known as the MAC method has also been developed (Harlow and
Welch, 1965; Welch et al., 1965). In this method, massless marker particles are
used to identify the free surface. Cells containing these marker particles are
known to lie on the interface. The main drawback of this method lies in the fact
that the resolution of the interface is limited to the mesh size, and in addition, no
information is available on the orientation and curvature of the free surface. As
well as maintaining a grid, additional marker particles are necessary, which
makes the method computationally expensive. Another disadvantage lies in the
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fact that interface boundary conditions are difficult to implement. However, the
method can treat any number of fluids and can also simulate interacting
surfaces undergoing large distortions. A fraction volume of a cell occupied by
one of the fluids can also be used as a marker particle. The main difficulty with
this is that, since only one piece of information is available regarding the
interface per cell, a certain arbitrariness in reconstructing the shape of the
interface has to be allowed. This no doubt, introduces errors, the extent of
which is difficult to judge (Barr and Ashurst). Noh and Woodward developed
the simple line interface calculation (SLIC) algorithm in which the cells are
partitioned by straight lines according to some fractional volume. The fluid
velocities are used to increment the interface in the normal direction. Various
authors have used the SLIC algorithm to varying degrees (Chorin, 1980; 1985;
Sethian, 1985; Youngs, 1975). Another variant of this approach is the volume of
fluid (VOF) method by Hirt and Nichols (1981). In this approach, a function F(x,
y;t) is defined such that an iso-value contour indicates the interface location.
The discontinuity in F across the interface is propagated using the expression,

(1)

This algorithm is similar to the SLIC method in that the interface is
approximated by a contour, passing through the interface surface elements. As
with the methods just discussed, the VOF method does not resolve details of the
interface that are smaller than the mesh size. In addition, the curvature of the
interface cannot be accurately determined. The slope of the interface is
determined by the average value of F in the interface elements. The main plus
for this method lies in its robustness and ability to treat multiple interfaces.
Temporary holes and a Darcy type law has been used to allow air to filter
through the porous mould walls as is the case for sand castings. In both cases,
an experienced user is needed for the resulting filling pattern to be realistic. The
grid can be adjusted adaptively in some cases to coincide locally with the
interface. This would no doubt, result in a higher resolution of the interface.
Information on the orientation and local curvature of the curves defining the
interface would then be readily available. The interface can then be tracked by
moving the interface mesh points in a Lagrangian manner. This method would
also allow for adaptivity in the interior of the solution domain, significantly
improving accuracy and resolution. The method used to adjust the mesh points
at the interface is, however, not trivial and would be difficult to implement for
highly deformed interfaces. A form of mapping could also be used, in which the
independent variable is used to transform the irregularly shaped domain into a
regularly shaped computational domain before discretisation of the governing
equations. The mapping function thus occurs explicitly as one of the unknown
functions in the system of governing equations. The problem is thus a fixed
domain problem, and maintains a sharp resolution at the interface, but its
application would be limited to geometries that do not result in singular
mappings. A review of the implementation of mapping algorithms can be found
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in reference (Floryan and Rasmussen, 1989). Another free surface tracking
method in this category is named fringe element generation. Here, fringe
elements are generated temporarily at the free surface so boundary conditions
are more accurately satisfied. A net inflow method has been applied to simulate
time dependent free surface flows (Wang and Wang, 1994). In this method, both
filled and unfilled domains are included in the analysis, with the volume of the
incompressible liquid in each control volume calculated at each iteration. Finite
element formulations have also been developed for simulating metal casting
flows using the fixed mesh approach (Backer, 1993; Broyer et al., 1995; Codina
et al., 1994; Gao et al., 1989; Hartin, 1993; Kreziak et al., 1993; Lin and Tsai, 1993;
Lipinski et al., 1993; Minaie et al., 1987; Ohnaka, 1993; Swaminathan and Voller,
1993; Tadayon et al., 1993; Usmani et al., 1992; Waite and Sammonds, 1993;
Zhang and Liu, 1993). As with the Lagrangian formulation, the method of
choice depends on the type of problem being modelled. 

2. Physical model
The equations governing the problem to be solved are the incompressibility
condition 

(2)

and the transport of fluid momentum, viz; 

(3)

where u denotes the fluid velocity, ρ the density, p the scalar pressure, f the body
force (ρg) and τ the viscous stress tensor.

Boundary conditions are applicable to the Navier Stokes equations as
specified velocities or pressure at the boundaries. These may be constant or
allowed to vary with time. In the problems described, pressure is specified as
atmospheric on the outlet boundaries, or free surface. At the neighbourhood of
the contact line, where the fluid interface intersects the solid boundaries,
conventional fluid mechanics indicates that the stress would become infinite
(Huh and Scriven, 1971). In all the examples dealt with in this work, slip
boundary conditions are used. This is due to the assumption that the boundary
layer has little effect on the flow pattern for mould filling problems. In addition,
modelling the fluid flow within the boundary layer requires a large number of
elements, significantly increasing the solution CPU time. The singularity at the
contact line is thus avoided when this class of boundary condition is used. 

3. Numerical model
The conventional Galerkin weighted residual technique is used to obtain a
discretised form of the governing equations. These were then approximated
using the mixed interpolation formulation so that variables could be reduced by
elimination. Details on the numerical model implemented can be found in
references (Lewis et al., 1997; Navti, 1996; Navti et al., 1997).



HFF
8,4

450

4. Lagrangian front tracking algorithm
The updated free surface Lagrangian-Eulerian finite element kinematic
description is used to modelling free surface flow in geometries where free
surface boundary conditions are important. The model is based on an Eulerian
finite element formulation applied to the solution of the Navier Stokes
equations, combined with a Lagrangian free surface incrementation/tracking
method. The principal advantage of this method lies in the natural
representation of the free surface. The points defining the boundary are not tied
together for the duration of the calculation, but can be deleted, added or
reconnected as desired. The efficiency of the mesh generator is crucial in
ensuring that the time saved in ommiting computations in the air domain are
not used up in re-meshing the domain. In order to be free from topological
constraints, the mesh employed in two dimensions, is, essentially triangular.
The CPU time required for mesh generation is small when compared with the
solution time. In fact, in most cases, significant saving in CPU time can be
obtained over other fixed mesh approaches by virtue of the air domain being
ignored. For most practical examples, the meshing accounts for approximately
15 per cent cpu time, while 80 per cent is spent in the solution phase. A full
description of the method, along with the approach used to automatically
assign boundary conditions to the changing domain is described in references
(Lewis et al., 1997; Navti, 1996; Navti et al., 1997).

5. Numerical examples
5.1 Analysis of a solitary wave propagation
The analysis of the propagation of a solitary wave, used by Ramaswamy and
Kawahara (1987) to validate his model, is presented in this section. The reader
is advised to refer to Ramaswamy's paper for references on the solitary wave
propagation problem, and a description of Laitone’s approximation, commonly
used for comparative study. It allows testing of the ability of the Lagrangian
free surface tracking algorithm and the finite element formulation in modelling
free surface flow problems with respect to time and displacement.

The dimensions of the problem analysed in this study is shown in Figure 1.
The time step used for the analysis was 0.050s, viscosity 1.0kg/ms, and density
1.0kg/m3. A gravitational acceleration of magnitude 9.8m/s2 acts in the vertical
downward direction. The aim of the study was to compare the run-up height, R,
of a solitary wave on a vertical wall. For the chosen dimensions, the initial
conditions at t = 0 secs can be obtained from Laitone’s approximation. These
can be written as 

u = 1.979898987 (sech2 (0.03872983346x))
v = 0.1533623161y(sech2(0.03872983346x))tanh(0.03872983346x)
η = 10.0 + 2.0sech2(0.03872983346x)
p = 9.8((10.0 + 2.0sech2(0.03872983346x)) –y) (4)
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where x and y are the coordinates of the mesh points, u and v the local point
velocities in the x and y cartesian coordinate directions, η the free surface
elevation, and p the pressure. The general form of the approximations can be
found in reference (Ramaswamy and Kawahara, 1987). 

The initial condition is shown in Figure 2, where the wave is moving
horizontally under hydrostatic pressure. The features observed at subsequent
time steps are presented in Figures 3 and 4. Figure 4 indicates that the wave hits
the right wall between t = 6.0s and t = 8.0s. A more accurate value can be
obtained by referring to Figure 5, i.e. t = 7.6s, when the rise-up height begins to
drop. A value of t = 7.7s was predicted by Ramaswamy and Kamahara (1987).
The rise-up at the point of impact was computed as R = 3.4, see Figure 5,
compared with R = 4.2 obtained using Laitone’s approximation. A subsequent
analysis using a viscosity of 10.0kg/ms predicted a rise-up height of R = 3.12.
This confirms that the viscous effects of the fluid modelled have an effect on the
rise-up height at the wall, and is attributed to be the reason why the rise-up
height does not compare directly with the results presented by Ramaswamy
and Kawahara (1987). Further computations at a viscosity of 0.1kg/ms were
attempted, but did not converge for the current mesh prescription. 

5.2 Filling of an axisymmetric wheel casting
The geometry of the axisymmetric pulley wheel problem is shown in Figure 6.
The material properties used were that of Al, density 2560kg/m3 and viscosity
1.7kg m–1s. In order to simulate the clearly turbulent nature of the flow using
the proposed laminar flow algorithm, a fictitious dynamic viscosity, 1,000 times
the real viscosity has been used. The filling was performed against a
gravitational force of 9.81m/s2, and under the driving force of a specified inlet
velocity of 0.31m/s. Slip boundary conditions were employed. The tolerance and

Figure 1.
Problem definition for

solitary wave
propagation
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relaxation parameters were set to 5 per cent and 0.5 respectively, with the mesh
generated at every time step. The time step was automatically chosen in order
to ensure that about 0.5 per cent of the mould cavity gets filled at each time step.
The selection of a constant maximum or minimum time step for the analysis as
with the previous example, proved to be inadequate as the metal filled the
domain. This was as a result of the much reduced free surface velocities, due to
flow in the third dimension being modelled. The time step selection, as well as
the mesh density were, therefore, automated, with the mesh density based on
the amount of metal in the mould; the only limitation being that the number of
elements must not exceed 2,000. This enables the program to be compiled
without options required for checking array dimensions, resulting in a more
efficient executable code. Throughout the analysis, the fluid loss due to wall
penetration is continually monitored, and limited to 5.0 per cent of the fluid
flowing in to the mould cavity.

Figures 7 to 10 show the results obtained for analysis. It can be noted that the
free surface has a fairly flat profile. The filling is at a constant rate for all

Figure 2.
Initial condition. From
top to bottom; U
velocity component
distribution (m/s), V
velocity component
distribution (m/s),
pressure (Pa) and
streamline contour plots
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sections of the casting for this analysis. The axisymmetric nature of the casting
results in low velocities in the interior of the mould cavity, when compared to
the velocity in the ingate. Some re-circulatory flow patterns are observed in the
analysis, evident from the stream line contour plots. The dominant effect of
gravity can be appreciated from the pressure contour plot. 

5.3 Filling of a simple gravity tilt-pour casting
In this section, the filling of a plate casting, containing an internal core is
analysed. Filling is initiated by tilting the mould cavity. This enables the pourer
to adjust the tilting speed so as to avoid surface turbulence and air entrapment.
Here, the pouring cup is initially filled with molten tin, at 400°C. Tilting the

Figure 3.
Mesh/front plots



HFF
8,4

454

experimental setup about its centre of gravity results in a controlled filling of
the mould cavity. Numerical results obtained can be compared to
experimentally derived filling results (Kim and Hong, 1995). The geometry of
the casting and setup is shown in Figure 11. In the experimental setup (see Kim
and Hong, 1995), the mechanical drive for the tilting system was provided by
variable speed electric motor. As in the experiment, the whole mould assembly
is rotated through a set angle, starting from a horizontal to a vertical position,
i.e. 0-90° rotation. The dimensions of the plate casting was 200 × 100 × 10mm.
The material properties used were, density 6840kg/m3 and viscosity
1.97kgm–1s. The driving force of the flow was gravity, 9.81m/s2, acting in the

Figure 4.
Velocity vector plots
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vertical downward direction. Slip boundary conditions were employed. The
tolerance and relaxation parameters used were identical to those in the previous
example, with the mesh generated at every time step. The time step was
allowed to vary between 0.001 and 0.005s, depending on the distance of the
closest free surface node to the wall, and the allowable fluid loss due to
penetration, currently 5 per cent of the instantaneous volume of fluid flowing
into the mould cavity. 

Figure 5.
Run-up height

Figure 6.
Casting geometry and

initial front
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Results obtained from the numerical analysis are shown in Figures 12 to 13.
Although the results presented by Kim and Hong are insufficient for a
conclusive validation of the tilt pouring algorithm, the free surface profile at the
selected time steps are similar to those obtained during the experiment. Tilting
results in a uniform filling rate, with the maximum free surface velocity
maintained at below 1.0m/s, ideal for mould filling.

Figure 7.
Mesh plots for 3-D
analysis
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6. Conclusion 
The effectiveness of an updated free surface Lagrangian-Eulerian finite element
kinematic description in simulating free surface flow problems, particularly
mould filling, has been demonstrated. A mixed interpolation formulation has
been successfully used to approximate the discretised the governing equations
for elimination, on a Lagrangian type moving mesh. Significant savings in CPU

Figure 8.
Velocity vector plots for

3-D analysis
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Figure 9.
Stream line contour
plots for 3-D analysis
(time in secs)
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time are realised, by virtue of the air domain not being considered in the finite
element analysis; unlike with the VOF method, an explicit determination of the
free surface results, making it ideal for the application of free surface boundary

Figure 10.
Pressure contour plots

(Pa) for 3-D analysis
(time in secs)



Figure 12.
Mesh plots for tilt-pour
analysis

Figure 11.
Mould setup and initial
front
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conditions. Difficulties associated with tracking the free surface would be
significantly reduced if the above method is applied to the modelling of
engineering processes where the free surface experiences less distortion. 
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